Uniqueness theorem in complete residuated Almost Distributive Lattices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Almost Distributive Lattices-I

The concept of a GADL as a generalization of an ADL is introduced. Necessary and sufficient conditions for a GADL to become a distributive lattice and a GADL to become an ADL are obtained. We also study the maximal sets in a GADL and give equivalent conditions for a GADL to become a distributive lattice in terms of maximal

متن کامل

“ Complete - Simple ” Distributive Lattices

It is well known that the only simple distributive lattice is the twoelement chain. We can generalize the concept of a simple lattice to complete lattices as follows: a complete lattice is complete-simple if it has only the two trivial complete congruences. In this paper we show the existence of infinite complete-simple distributive lattices. “COMPLETE-SIMPLE” DISTRIBUTIVE LATTICES G. GRÄTZER A...

متن کامل

Closure Operators in Almost Distributive Lattices

The concept of a closure operator ∇ in an ADL R was introduced. If ∇R is the set of all ∇−invariant elements of R, then the concepts of ∇R−ideal, ∇R−prime ideal are introduced. The interrelations between ∇R−prime ideal and minimal prime ideal of R are derived. If B is the Birkhoff centre of R, then a sufficient condition is derived for a B−ideal to be a minimal prime ideal of R. Mathematics Sub...

متن کامل

Relative Annihilators in Almost Distributive Lattices

Some properties of relative annihilators are studied in Almost Distributive Lattices (ADLs). Prime ideal conditions on ADLs are investigated in connection with the relative annihilators. The concept of Boolean congruences is introduced and characterized in terms of relative annihilators. Copyright c © 2011 Yang’s Scientific Research Institute, LLC. All rights reserved.

متن کامل

Finite distributive lattices are congruence lattices of almost- geometric lattices

A semimodular lattice L of finite length will be called an almost-geometric lattice, if the order J(L) of its nonzero join-irreducible elements is a cardinal sum of at most two-element chains. We prove that each finite distributive lattice is isomorphic to the lattice of congruences of a finite almost-geometric lattice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae - General Algebra and Applications

سال: 2019

ISSN: 1509-9415,2084-0373

DOI: 10.7151/dmgaa.1316